AP Chemistry Free Response Question 1982 A

A buffer solution contains $\mathbf{0 . 4 0}$ moles of formic acid, HCOOH , and $\mathbf{0 . 6 0}$ moles of sodium formate, HCOONa, in 1.00 L of solution. The equilibrium constant, K_{a}, of formic acid is $1.8 \times \mathbf{1 0}^{-4}$.
(a) Calculate the pH of this solution

$$
\mathrm{p} K_{\mathrm{a}}=-\log \left(1.8 \times 10^{-4}\right) \approx 3.75
$$

Since the solution contains both a weak acid and its conjugate base, we can use the HendersonHasselbalch equation to calculate the pH . It is not necessary to calculate the actual concentrations of the substances.

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right)=3.75+\log \left(\frac{0.60 \mathrm{~mol}}{0.40 \mathrm{~mol}}\right) \approx 3.9
$$

(b) If $100 . \mathbf{m L}$ of this buffer solution is diluted to a volume of 1.00 L with pure water, the $\mathbf{p H}$ does not change. Discuss why the $\mathbf{p H}$ remains constant on dilution.

According to the Henderson-Hasselbalch equation, the pH does not depend on the exact concentrations of the conjugate acid-base pair, but only on the ratio of their concentrations. Dilution decreases each concentration by the same factor, so the pH is not affected.
(c) A 5.00 mL sample of 1.00 M HCl is added to 100 . $\mathbf{m L}$ of the original buffer solution. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the resulting solution.

HCl is a strong acid, so it will dissociate completely into H^{+}and Cl^{-}ions. The H^{+}will react with HCOO^{-}in a neutralization reaction which goes to completion.

$$
\mathrm{H}^{+}(a q)+\mathrm{HCOO}^{-}(a q) \rightarrow \mathrm{HCOOH}(a q)
$$

First we calculate the moles of each substance in the solutions to be mixed:

$$
n_{H^{+}}=M_{H^{+}} V_{H^{+}}=(1.00 \mathrm{M})(0.005 \mathrm{~L})=0.005 \mathrm{~mol}
$$

(Technically, we should add these moles of H^{+}to the moles of H^{+}that were present in the buffer solution before mixing; however, this can be neglected, since the original amount of was H^{+}will be very small compared to the amount produced by the HCl .)

$$
\begin{aligned}
& n_{\mathrm{HCOO}^{-}}=0.60 \mathrm{~mol}\left(\frac{100 \mathrm{~mL}}{1000 \mathrm{~mL}}\right)=0.060 \mathrm{~mol} \\
& n_{\mathrm{HCOOH}}=0.40 \mathrm{~mol}\left(\frac{100 \mathrm{~mL}}{1000 \mathrm{~mL}}\right)=0.040 \mathrm{~mol}
\end{aligned}
$$

H^{+}is the limiting reagent, so the reaction will proceed until all 0.005 moles of H^{+}are reacted.

	$\mathrm{H}^{+}(\mathrm{aq})$	$\mathrm{HCOO}^{-}(a q)$	$\mathrm{HCOOH}(\mathrm{aq})$
I	0.005 mol	0.060	0.040
C	- 0.005 mol	- 0.005 mol	+ 0.005 mol
F	0 mol	0.055 mol	0.045 mol

There are still moles of both the conjugate acid and the conjugate base, so we can again use the Henderson-Hasselbalch equation to calculate the pH .

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right)=3.75+\log \left(\frac{0.55 \mathrm{~mol}}{0.45 \mathrm{~mol}}\right) \approx 3.83
$$

Finally,

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.83} \approx 1.5 \times 10^{-4} \mathrm{M}
$$

(d) An $800 . \mathrm{mL}$ sample of 2.00 M formic acid is mixed with $200 . \mathrm{mL}$ of 4.80 M NaOH . Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of the resulting solution.

Part (d) can be answered in essentially the same way as part (c).
NaOH is a strong base, so it will dissociate completely into Na^{+}and OH^{-}ions. The OH^{-}will react with HCOOH in a neutralization reaction which goes to completion.

$$
\mathrm{HCOOH}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{HCOO}^{-}(a q)
$$

First we calculate the moles of each substance in the solutions to be mixed.

$$
\begin{gathered}
n_{\mathrm{OH}^{-}}=M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}=(4.80 M)(0.200 \mathrm{~L})=0.96 \mathrm{~mol} \\
n_{\mathrm{HCOOH}}=M_{\mathrm{HCOOH}} V_{\mathrm{HCOOH}}=(2.00 M)(0.800 \mathrm{~L})=1.6 \mathrm{~mol} \\
n_{\mathrm{HCOO}^{-}}=0 \mathrm{~mol}
\end{gathered}
$$

OH^{-}is the limiting reagent, so the reaction will proceed until all 0.96 moles of OH^{-}are reacted.

	$\mathrm{HCOOH}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{HCOO}^{-}(a q)$			
I	1.60 mol	0.96 mol	lots	0
C	-0.96 mol	-0.96 mol	+ 0.96 mol	+ 0.96 mol
F	0.64 mol	0 mol	lots	0.96 mol

There are moles of both the conjugate acid and the conjugate base present, so we can use the Henderson-Hasselbalch equation to calculate the pH .

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right)=3.75+\log \left(\frac{0.96 \mathrm{~mol}}{0.64 \mathrm{~mol}}\right) \approx 3.92
$$

Finally,

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.92} \approx 1.2 \times 10^{-4} \mathrm{M}
$$

