Finding the point of tangency between a curve and a line Problem:

Given that
a) a circle with radius 2 centered at the origin, and
b) a line which passes through the point $(3,0)$
are tangent to each other in the third quadrant, find the point of tangency.

Solution:

Let (a, b) be the coordinates of the point of intersection.

Because (a, b) lies on the edge of the circle, it must satisfy $a^{2}+b^{2}=4$. Solving for b, we have $b= \pm \sqrt{4-a^{2}}$. Since the point of tangency is in the third quadrant, its coordinates are therefore $\left(a,-\sqrt{4-a^{2}}\right)$.

Next we calculate the distance between
 $(3,0)$ and $\left(a,-\sqrt{4-a^{2}}\right)$:

$$
d=\sqrt{(3-a)^{2}-\left(0+\sqrt{4-a^{2}}\right)^{2}}=\sqrt{9-6 a+a^{2}+4-a^{2}}=\sqrt{13-6 a}
$$

The tangent line, the radius of the circle, and the x-axis form a right triangle. Therefore, according to the Pythagorean thoerem:

$$
\begin{gathered}
d^{2}+2^{2}=3^{2} \\
(\sqrt{13-6 a})^{2}+2^{2}=3^{2} \\
13-6 a+4=9 \\
6 a=8 \\
a=\frac{4}{3}
\end{gathered}
$$

Substituting this into the expression for b, we get

$$
b=-\sqrt{4-a^{2}}=-\sqrt{4-\left(\frac{4}{3}\right)^{2}}=-\sqrt{\frac{36}{9}-\frac{16}{9}}=-\sqrt{\frac{20}{9}}=-\frac{2 \sqrt{5}}{3}
$$

Thus, the point of intersection is

$$
\left(\frac{4}{3},-\frac{2 \sqrt{5}}{3}\right)
$$

