7. Solve $\phi^{\prime \prime}(x)-c \phi(x)=0$ on $0<x<1$
subject to the boundary conditions $\phi(0)=0$ and $7 \phi^{\prime}(0)-4 \phi(1)=0$
CASE 1: $c>0$
General solution: $\phi(x)=A \sinh (x \sqrt{c})+B \cosh (x \sqrt{c})$
BC1:
$B=0$
$\longrightarrow \phi(x)=A \sinh (x \sqrt{c})$

BC2:
$7 \sqrt{c}-4 \sinh (\sqrt{c})=0$
This equation must be solved numerically. It has one eigenvalue solution, $c \approx 3.7365$
There are no restrictions on A, so we have one eigenfunction

$$
\phi(x)=A \sinh (x \sqrt{c}) \text { with } c \approx 3.7365
$$

It looks like:

plot(subs(\{A=1, c=3.7365, phi), x=0..1)

CASE 2: c < 0
$\phi(x)=A \sin (x \sqrt{-c})+B \cos (x \sqrt{-c})$
BC1:
$\phi(0)=0$
$\longrightarrow B=0$
$\longrightarrow \phi(x)=A \sin (x \sqrt{-c})$
BC2:
$7 \phi^{\prime}(0)-4 \phi(1)=0$
$\longrightarrow A \sqrt{-c}-4 \sin (\sqrt{-c})=0$
This equation has no solutions for $c<0$.

CASE 3: $c=0$
$\phi(x)=A x+B$
Since $\phi(0)=0$, the y-intercept is zero and $\phi(x)=A x$
Applying the second boundary condition, we have
$7 \phi^{\prime}(0)-4 \phi(1)=0$
$\longrightarrow 7 A-4 A=0$
This is true only if $\mathrm{A}=0$, so the only solution is the trivial solution

$$
\phi(x)=0
$$

