5. Solve $\phi^{\prime \prime}(x)-c \phi(x)=0$ on $0<x<1$
subject to the boundary conditions $\int_{0}^{1} \phi(x)=0$ and $\phi(0)=\phi(1)$
CASE 1: $c>0$
General solution: $\phi(x)=A \sinh (x \sqrt{c})+B \cosh (x \sqrt{c})$
BC1:
$\int_{0}^{1} \phi(x)=\left[\frac{A}{\sqrt{c}} \cosh (x \sqrt{c})+\frac{B}{\sqrt{c}} \sinh (x \sqrt{c})\right]_{0}^{1}=0$
$\longrightarrow A \cosh (\sqrt{c})+B \sinh (\sqrt{c})-A=0$

BC2:
$\phi(0)=\phi(1)$
$\longrightarrow B=A \sinh (\sqrt{c})+B \cosh (\sqrt{c})$
Combining the boundary conditions, we have:
$\frac{A}{B}=\frac{-\sinh (\sqrt{c})}{\cosh (\sqrt{c})-1}=\frac{1-\cosh (\sqrt{c})}{\sinh (\sqrt{c})}$
$\sinh ^{2}(\sqrt{c})=(\cosh (\sqrt{c})-1)^{2}$
$\cosh ^{2}(\sqrt{c})-1=(\cosh (\sqrt{c})-1)^{2}$
Letting $p=\cosh (\sqrt{c})$,
$p^{2}-1=(p-1)^{2}$
$p^{2}-1=p^{2}-2 p+1$
$p=1 \longrightarrow \sqrt{c}=0$
Substituting into the general solution gives
$\phi(x)=B$
which satisifies the boundary conditions only when $\mathrm{B}=0$ (the trivial solution).

CASE 2: c < 0
$\phi(x)=A \sin (x \sqrt{-c})+B \cos (x \sqrt{-c})$
BC1:
$\int_{0}^{1} \phi(x)=\left[-\frac{A}{\sqrt{-c}} \cos (x \sqrt{-c})+\frac{B}{\sqrt{-c}} \sin (x \sqrt{-c})\right]_{0}^{1}=0$
$\longrightarrow-A \cos (\sqrt{-c})+B \sin (\sqrt{-c})-(-A)=0$

BC2:
$\phi(0)=\phi(1)$
$\longrightarrow B=A \sin (\sqrt{-c})+B \cos (\sqrt{-c})$
Combining the boundary conditions,
$\frac{A}{B}=\frac{\sin (\sqrt{-c})}{\cos (\sqrt{-c})-1}=\frac{1-\cos (\sqrt{-c})}{\sin (\sqrt{-c})}$
$-\sin ^{2}(\sqrt{-c})=(\cos (\sqrt{-c})-1)^{2}$
$\cos ^{2}(\sqrt{-c})-1=(\cos (\sqrt{c})-1)^{2}$
Letting $p=\cos (\sqrt{-c})$, we have
$p^{2}-1=(p-1)^{2}$
$p^{2}-1=p^{2}-2 p+1$
$p=1 \longrightarrow \sqrt{-c}=2 \pi n$ for integer values of n
Substituting into the general solution gives

$$
\phi(x)=A \sin (2 \pi n x)+B \cos (2 \pi n x)
$$

with corresponding eigenvalues $c=-(2 \pi n)^{2}$ (Remember that $c<0$.)
Since this function is periodic with period = 1 and since the integral of sine or cosine over one operiod is 0 , this satisfies the boundary conditions for all values of A and B.

Here are some typical graphs:

CASE 3: $c=0$
$\phi(x)=A x+B$
This is a linear functions. Since $\phi(0)=\phi(1)$, the slope A must be zero.
Also, since the integral over $[0,1]=0, B$ must also be zero. This gives only the trivial solution.

