6. Solve $\phi^{\prime \prime}(x)-c \phi(x)=0$ on $0<x<2$
subject to the boundary conditions $\int_{0}^{2} \phi(x)=0$ and $\phi(1)=0$
CASE 1: $c>0$
General solution: $\phi(x)=A \sinh (x \sqrt{c})+B \cosh (x \sqrt{c})$
BC1:
$\int_{0}^{2} \phi(x)=\left[\frac{A}{\sqrt{c}} \cosh (x \sqrt{c})+\frac{B}{\sqrt{c}} \sinh (x \sqrt{c})\right]_{0}^{2}=0$
$\longrightarrow A \cosh (\sqrt{2 c})+B \sinh (\sqrt{2 c})-A=0$

BC2:
$\phi(1)=0$
$\longrightarrow A \sinh (\sqrt{c})+B \cosh (\sqrt{c})=0$
Combining the boundary conditions, we have:
$\frac{A}{B}=\frac{-\sinh (\sqrt{2 c})}{\cosh (\sqrt{2 c})-1}=-\frac{\cosh (\sqrt{c})}{\sinh \sqrt{c}}$
Applying the double angle identities $\sinh (2 x)=2 \sinh x \cosh x$ and $\cosh (2 x)=2 \cosh ^{2} x-1$,

$$
\begin{aligned}
& =\frac{-2 \sinh (\sqrt{c}) \cosh (\sqrt{c})}{2 \cosh ^{2}(\sqrt{c})-2}=-\frac{\cosh (\sqrt{c})}{\sinh \sqrt{c}} \\
& \longrightarrow \frac{\sinh (\sqrt{c})}{\cosh ^{2}(\sqrt{c})-1}=\frac{1}{\sinh (\sqrt{c})} \\
& \longrightarrow \sinh ^{2}(\sqrt{c})=\cosh ^{2}(\sqrt{c})-1
\end{aligned}
$$

But this is just an identity (true for all values of \sqrt{c}), so it results in an infinite set of positive eigenvalues.

Substituting the boundary condition $\frac{A}{B}=-\frac{\cosh (\sqrt{c})}{\sinh (\sqrt{c})}$, derived earlier, into the general solution gives $\phi(x)=-B \frac{\cosh (\sqrt{c})}{\sinh (\sqrt{c})} \sinh (x \sqrt{c})+B \cosh (x \sqrt{c})$ for all $c>0$.

Here are some typical graphs:

plot(subs($\{\mathrm{B}=2, \mathrm{c}=3\}$, phi), $\mathrm{x}=0 . .2$)

plot(subs($\{B=-1.3, c=1.9, p h i), x=0 . .2)$

CASE 2: c < 0
$\phi(x)=A \sin (x \sqrt{-c})+B \cos (x \sqrt{-c})$
BC1:
$\int_{0}^{2} \phi(x)=\left[-\frac{A}{\sqrt{-c}} \cos (x \sqrt{-c})+\frac{B}{\sqrt{-c}} \sin (x \sqrt{-c})\right]_{0}^{2}=0$
$\longrightarrow-A \cos (2 \sqrt{-c})+B \sin (2 \sqrt{-c})-(-A)=0$

BC2:
$\phi(1)=0$
$\longrightarrow A \sin (\sqrt{-c})+B \cos (\sqrt{-c})=0$
Combining the boundary conditions,
$\frac{A}{B}=\frac{-\sin (2 \sqrt{-c})}{1-\cos (2 \sqrt{-c})}=-\frac{\cos (\sqrt{-c})}{\sin (\sqrt{-c})}$
$=\frac{2 \sin (\sqrt{-c}) \cos (\sqrt{-c})}{2 \sin ^{2}(\sqrt{-c})}=\frac{\cos (\sqrt{-c})}{\sin (\sqrt{-c})}$

This is again an identity.

$$
\phi(x)=-B \frac{\cos (\sqrt{-c})}{\sin (\sqrt{-c})} \sin (x \sqrt{-c})+B \cos (x \sqrt{-c}) \text { for all } c<0
$$

Typical graphs are similar to those in the $c>0$ case.

CASE 3: $c=0$
$\phi(x)=A x+B$
Since this function is linear has a x-intercept at $x=1$, any line passing through the point $(1,0)$ will satisfy the boundary conditions.
$\phi(x)=A(x-1)$, if $c=0$

