Problem #4 (25 points) - Another Regular Sturm-Liouville Problem
a.) (15 points) Deternune the eigenvalues /4 and corresponding non-zero eigenfunctions ¢(x)
to the RSLP consisting of the ODE

o"(x)+ 40 (x)+ (U2 +2+ Dop(x) =0
for 0 < x < 1 with the BCs ¢'(0) = 0 and ¢'(1) = 0. Hint: First show that
de™ sinh(xy—4) + Be™ cosh(xy—4). when A <0
p(x) = Ave™ + Be™, when A =0
Ae~ sin(x 1) + Be™ cos(x 7). when 2 =0
for constants 4 and B. and be sure to check A < 0. A =0and A > 0.
b.) (5 Points) Make plots of ¢;(x). ¢2(x) and ¢3(x). showing that when the 4,’s are ordered
as A1 < A2 < A3 < ..., the eigenfunction ¢,(x) goes through zero exactly n — 1 times in

the open interval 0 < x < 1.
c.) (5 Points) If a piecewise continuous function f{x) in the interval 0 < x < 1 1s expressed as

ﬂ.T) = Z An(Pn (T')
n=1

for 0 < x < 1. determine an expression for the a, in terms of f{x) and ¢, (x).

a)

Since the solution has been provided, we just need to verify that that it satisifies the differential equation for
each of the three cases A < 0, A = 0, and A > 0. Differentiating as follows,

i) A <0

p(x) = Ae™ sinh(zv—\) + Be ™ cosh(zv/—N\)

¢ (z) = —2Aze™ sinh(zv/=X\) + Ae™* v/=Xcosh(zV/—X) — 2Bze™" cosh(zvV/—X) + Be ™ v/=Xsinh(zv—N\)

¢ (z) = —24e~" sinh(zv/—\) + 4422~ sinh(zv/—\) — 4Aze™* v/—Acosh(zv/—X) — Ae™® Asinh(zv/—N\)
—2Be™"" cosh(zv/=\) + 4Bz%e™" cosh(zv/=\) — 4B:re_“’2\/——/\sinh(:c\/——)\) — Be %\ cosh(zy/—\)

Substituting back into the original differential equation, we have

—24e~" sinh(zv —\) + 4Az%e " sinh(zv—\) — AAze ™ /=X cosh(zv =) — Ae™*" ) sinh(zv'—\)

—2:’5’('_“'? L'(}Hh{',r\f——)\} +dBace” r* coshirv —A) — ABre™" V=Asinh(zv—\) — Be™"" A cosh{r v/ —\)

—8Axr%e @’ Hi]llif_,r‘\r’;——/\} + 4 Are w V—A\ (':n:-sh{.r\.--"j} — 8Bu?e r ("(}H}ll:,r\_.-"'l’—_)\] + 4Baxe @’ VY Hi|1h(’,;‘\_.--"——,\']

+4Az%e " sinh(zv —\) + ABz%e™ " cosh(zv/—\) + 2Ae~"" sinh(zv/—\) + 2Be™* cosh(zv —\)

+ A\ sinh(zv —\) + Be™*"\ cosh(zv—-A) =0

where the terms underlined in the same colors cance out. This confirms that the solution satisifies the DE.



ii) A=0
o(z) = Aze™™ + Be™™
¢ (z) = Ae™™ — 242%™ — 2Bze ™

" —xz? 3 —ax? —x? 2 —a?
¢'(x) = —6Axze™™ +4Ax°e”™" —2Be © 4 4Bz“e

Substituting into the original differential equation, we have

2

_6Aze " + AAz3e="" _ 9Be~" + ABze™ " + AAze™" — 8Az3e™" — ABgle~"
0 0
F4Az%e ™ +4BaPe + 240 +2Be " + AgdT + By Y =0

where the terms underlined in the same color cancel out and the terms containing A disappear since A = 0.

iii) A >0

o(x) = Ae™™ sin(zVA) + Be™® cos(zV/A)

¢ () = —2Aze™ sin(zvV\) + Ade~™ VA cos(zVA) — 2Bze™ " cos(zVA) — Be™™ VAsin(zvV/\)

o'(x) = —24e™" sin(zV\) + 4Az2e™™ sin(zV\) — 4Aze™™ A cosh(zVA) — Ae™™ ) sin(zV/\)
—2Be™" cos(zV\) + ABz2e™ cos(zV ) + 4Bxe™" VA sin(zv/\) — Be™*"\ cos(z+/A)

Substituting back into the original differential equation, we have

246~ sin(zV\) + 4Az%e sin(zV/\) — AAze™ /X cosh(zV\) — Ae™" ) sin(zV/\)

2B cos(rvV ) + 4Bz cos(a V) + ABre™" VA sin{avA) — Be="" ) cos(rv/A)

—8Ax2e™ sin(zvVA) + dAze™™ A cos(zVA) — 8Bz%e™* cos(zV\) — 4Bze™* VAsin(zV))

+4Az%e sin(zv/A) + 4Bz cos(zv/A) + 2Ae* sin(zvA) + 2Be " cos(zv/\)

FAe ) sin(zv/\) + Be_a"!,\cos(:r\/x) =0

where the terms underlined with the same color cancel out.



iv) Boundary conditions for the case where A < 0:

The condition

¢'(0) = AV=X=0

implies that A = 0 so that p(z) = Be™™ cosh(zv/—\). The condition
¢’ (1) = —2Be~ ! cosh(v/ =) + Be 'v/=Asinh(vV/=)) = 0

implies that
V=2
coth(v —A) = —

which has one solution when \; =~ —4.266, shown here:

p1(x) = Be™™ cosh(zv/—A\1)

v) Boundary conditions for the case where A = 0:
©'(0) = Ae® —2A(0)%e” — 2B(0)e =0

implies A = 0

so that p(z) = Be™™

¢'(1) = —2B(1)e ' =0

implies that B = 0, so that this case gives only the trivial solution ¢(z) = 0
vi) Boundary conditions for the case where A > 0:
The condition

©'(0) = AVA=0

implies A =0

and that p(z) = Be ™ cos(z V).

The condition

¢'(1) = —2Be" cos(VA) — Be }VAsin(1vV/\) = 0

implies that

ol

cot(VA) = —



This has an infinite number of eigenvalue solutions
An € {6.045,35.514,84.842,...}

with corresponding eigenfunctions

on(x) = Be ™ cos(zv/An)

b) Plots of eigenfunctions

] v1(x) = e~ cosh <:v\/)\1)
)\1 ~ —4.266

0.5

) | . . . p3(x) = e~ cos (SC\/)\g)
- - - I 3~ 35.514

-0.54

po(x) = e~ cos <x\/)\72>

A2 ~ 6.045

We can see that when listed in order of increasing eigenvalues, the nth eigenfunction has n — 1 zeros on the
interval (0, 1) as predicted by Sturm-Liouville theory.

¢) Eigenfunction expansion of f(x)

In order to compute the coefficients a,, in
o0
f(x) = Z @n(x> )
n=1

we need to take advantage of the orthogonality of the eigenfunctions with respect to the inner product

1
(Om, Pn) = / Ompnw(z)de
0

where the weight function w(z) appears multiplied by —Ay(x) when the differential equation is written in
standard Sturm-Liouville form.

(s(x)¢’) + p(x)p = —dw(z)p

We can rewrite it in this form by multiplying both sides of the original differential equation by an integrating
factor

o 4xdx 222
— e

() =e™,



where the integrand (4z in this case) is the function multplied by the ¢’(z) term.

This results in

27 o (z) + 4we®® ¢/ (z) + (42% + 2+ N)eX p(z) =0,
or, after a bit of rearrangement

(62“"2 :p’(;r))l + (422 + 24—)82“’2 = —)\eg‘czgo(x)

Sow(x) = 2=

Applying this “dot product” to f(x) gives

1 oo 1 1
/ gonf(x)ezx2d:13 = Z an/ SOmQOnehzdw = an/ 2 20° 4
0 ot 0 0

(since all the m # n terms in the summation are equal to zero)

implying that
_ Jo af@)e* da
" fol p2e22dy

where the integral in the denominator is given by

. 1
/ 2 21 dx = / Bz —2a2 COSZ(:I: H)\n)eQw}‘dx — _82/ COSQ(.'I?V /\n)dx
] 0

B2 [! B2 sin(2v/n)
e *0OS 2 e T =— _—
) (1 + cos(2z/ A ,,)) dx 5 (1 + ow )



