Problem \#4 (25 points) - Another Regular Sturm-Liouville Problem

a.) (15 points) Determine the eigenvalues λ and corresponding non-zero eigenfunctions $\varphi(x)$ to the RSLP consisting of the ODE

$$
\varphi^{\prime \prime}(x)+4 x \varphi^{\prime}(x)+\left(4 x^{2}+2+\lambda\right) \varphi(x)=0
$$

for $0<x<1$ with the $\operatorname{BCs} \varphi^{\prime}(0)=0$ and $\varphi^{\prime}(1)=0$. Hint: First show that

$$
\varphi(x)=\left\{\begin{array}{cc}
A e^{-x^{2}} \sinh (x \sqrt{-\lambda})+B e^{-x^{2}} \cosh (x \sqrt{-\lambda}), & \text { when } \lambda<0 \\
A x e^{-x^{2}}+B e^{-x^{2}}, & \text { when } \lambda=0 \\
A e^{-x^{2}} \sin (x \sqrt{\lambda})+B e^{-x^{2}} \cos (x \sqrt{\lambda}), & \text { when } \lambda \neq 0
\end{array}\right.
$$

for constants A and B, and be sure to check $\lambda<0, \lambda=0$ and $\lambda>0$.
b.) (5 Points) Make plots of $\varphi_{1}(x), \varphi_{2}(x)$ and $\varphi_{3}(x)$, showing that when the λ_{n} 's are ordered as $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$, the eigenfunction $\varphi_{n}(x)$ goes through zero exactly $n-1$ times in the open interval $0<x<1$.
c.) (5 Points) If a piecewise continuous function $f(x)$ in the interval $0<x<1$ is expressed as

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)
$$

for $0<x<1$, determine an expression for the a_{n} in terms of $f(x)$ and $\varphi_{n}(x)$.
a)

Since the solution has been provided, we just need to verify that that it satisifies the differential equation for each of the three cases $\lambda<0, \lambda=0$, and $\lambda>0$. Differentiating as follows,
i) $\lambda<0$

$$
\begin{aligned}
& \varphi(x)=A e^{-x^{2}} \sinh (x \sqrt{-\lambda})+B e^{-x^{2}} \cosh (x \sqrt{-\lambda}) \\
& \varphi^{\prime}(x)=-2 A x e^{-x^{2}} \sinh (x \sqrt{-\lambda})+A e^{-x^{2}} \sqrt{-\lambda} \cosh (x \sqrt{-\lambda})-2 B x e^{-x^{2}} \cosh (x \sqrt{-\lambda})+B e^{-x^{2}} \sqrt{-\lambda} \sinh (x \sqrt{-\lambda}) \\
& \varphi^{\prime \prime}(x)=-2 A e^{-x^{2}} \sinh (x \sqrt{-\lambda})+4 A x^{2} e^{-x^{2}} \sinh (x \sqrt{-\lambda})-4 A x e^{-x^{2}} \sqrt{-\lambda} \cosh (x \sqrt{-\lambda})-A e^{-x^{2}} \lambda \sinh (x \sqrt{-\lambda}) \\
& \quad-2 B e^{-x^{2}} \cosh (x \sqrt{-\lambda})+4 B x^{2} e^{-x^{2}} \cosh (x \sqrt{-\lambda})-4 B x e^{-x^{2}} \sqrt{-\lambda} \sinh (x \sqrt{-\lambda})-B e^{-x^{2}} \lambda \cosh (x \sqrt{-\lambda)}
\end{aligned}
$$

Substituting back into the original differential equation, we have

$$
\begin{aligned}
& \underline{-2 A e^{-x^{2}} \sinh (x \sqrt{-\lambda})}+\underline{4 A x^{2} e^{-x^{2}} \sinh (x \sqrt{-\lambda})-4 A x e^{-x^{2}} \sqrt{-\lambda} \cosh (x \sqrt{-\lambda})-A e^{-x^{2}} \lambda \sinh (x \sqrt{-\lambda})} \\
& \underline{-2 B e^{-x^{2}} \cosh (x \sqrt{-\lambda})}+\underline{4 B x^{2} e^{-x^{2}} \cosh (x \sqrt{-\lambda})}-\underline{4 B x e^{-x^{2}} \sqrt{-\lambda} \sinh (x \sqrt{-\lambda})-B e^{-x^{2}} \lambda \cosh (x \sqrt{-\lambda})}
\end{aligned}
$$

$$
\begin{aligned}
& +\underline{4 A x^{2} e^{-x^{2}} \sinh (x \sqrt{-\lambda})}+\underline{4 B x^{2} e^{-x^{2}} \cosh (x \sqrt{-\lambda})}+\underline{2 A e^{-x^{2}} \sinh (x \sqrt{-\lambda})}+\underline{2 B e^{-x^{2}} \cosh (x \sqrt{-\lambda})} \\
& +\underline{A e^{-x^{2}} \lambda \sinh (x \sqrt{-\lambda})}+\underline{B e^{-x^{2}} \lambda \cosh (x \sqrt{-\lambda})}=0
\end{aligned}
$$

where the terms underlined in the same colors cance out. This confirms that the solution satisifies the DE.
ii) $\lambda=0$

$$
\begin{aligned}
& \varphi(x)=A x e^{-x^{2}}+B e^{-x^{2}} \\
& \varphi^{\prime}(x)=A e^{-x^{2}}-2 A x^{2} e^{-x^{2}}-2 B x e^{-x^{2}} \\
& \varphi^{\prime \prime}(x)=-6 A x e^{-x^{2}}+4 A x^{3} e^{-x^{2}}-2 B e^{-x^{2}}+4 B x^{2} e^{-x^{2}}
\end{aligned}
$$

Substituting into the original differential equation, we have

$$
\begin{aligned}
& \underline{-6 A x e^{-x^{2}}}+\underline{4 A x^{3} e^{-x^{2}}}-2 B e^{-x^{2}}+\underline{4 B x^{2} e^{-x^{2}}}+\underline{4 A x e^{-x^{2}}}-\underline{x^{0}}-\frac{8 A x^{3} e^{-x^{2}}}{\lambda_{2}^{0}}-\underline{4 B x^{2} e^{-x^{2}}} \\
& +\underline{4 A x^{3} e^{-x^{2}}}+\underline{4 B x^{2} e^{-x^{2}}}+\underline{2 A x e^{-x^{2}}}+\underline{2 B e^{-x^{2}}}+A x \gamma e^{-x^{2}}+B \lambda e^{-x^{2}}=0
\end{aligned}
$$

where the terms underlined in the same color cancel out and the terms containing λ disappear since $\lambda=0$.
iii) $\lambda>0$

$$
\begin{aligned}
\varphi(x)= & A e^{-x^{2}} \sin (x \sqrt{\lambda})+B e^{-x^{2}} \cos (x \sqrt{\lambda}) \\
\varphi^{\prime}(x)= & -2 A x e^{-x^{2}} \sin (x \sqrt{\lambda})+A e^{-x^{2}} \sqrt{\lambda} \cos (x \sqrt{\lambda})-2 B x e^{-x^{2}} \cos (x \sqrt{\lambda})-B e^{-x^{2}} \sqrt{\lambda} \sin (x \sqrt{\lambda}) \\
\varphi^{\prime \prime}(x)= & -2 A e^{-x^{2}} \sin (x \sqrt{\lambda})+4 A x^{2} e^{-x^{2}} \sin (x \sqrt{\lambda})-4 A x e^{-x^{2}} \sqrt{\lambda} \cosh (x \sqrt{\lambda})-A e^{-x^{2}} \lambda \sin (x \sqrt{\lambda}) \\
& -2 B e^{-x^{2}} \cos (x \sqrt{\lambda})+4 B x^{2} e^{-x^{2}} \cos (x \sqrt{\lambda})+4 B x e^{-x^{2}} \sqrt{\lambda} \sin (x \sqrt{\lambda})-B e^{-x^{2}} \lambda \cos (x \sqrt{\lambda)}
\end{aligned}
$$

Substituting back into the original differential equation, we have

$$
\begin{aligned}
& \underline{-2 A e^{-x^{2}} \sin (x \sqrt{\lambda})}+\underline{4 A x^{2} e^{-x^{2}} \sin (x \sqrt{\lambda})}-\underline{4 A x e^{-x^{2}} \sqrt{\lambda} \cosh (x \sqrt{\lambda})-A e^{-x^{2}} \lambda \sin (x \sqrt{\lambda})} \\
& \underline{-2 B e^{-x^{2}} \cos (x \sqrt{\lambda})}+\underline{4 B x^{2} e^{-x^{2}} \cos (x \sqrt{\lambda})}+\underline{4 B x e^{-x^{2}} \sqrt{\lambda} \sin (x \sqrt{\lambda})-\underline{B e^{-x^{2}} \lambda \cos (x \sqrt{\lambda)}}} \\
& \underline{-8 A x^{2} e^{-x^{2}} \sin (x \sqrt{\lambda})}+\underline{4 A x e^{-x^{2}} \sqrt{\lambda} \cos (x \sqrt{\lambda})-\underline{8 B x^{2} e^{-x^{2}} \cos (x \sqrt{\lambda})}-\underline{4 B x e^{-x^{2}} \sqrt{\lambda} \sin (x \sqrt{\lambda})}} \\
& +\underline{4 A x^{2} e^{-x^{2}} \sin (x \sqrt{\lambda})}+\underline{4 B x^{2} e^{-x^{2}} \cos (x \sqrt{\lambda})}+\underline{2 A e^{-x^{2}} \sin (x \sqrt{\lambda})}+\underline{2 B e^{-x^{2}} \cos (x \sqrt{\lambda})} \\
& +\underline{A e^{-x^{2}} \lambda \sin (x \sqrt{\lambda})}+\underline{B e^{-x^{2}} \lambda \cos (x \sqrt{\lambda})}=0
\end{aligned}
$$

where the terms underlined with the same color cancel out.
iv) Boundary conditions for the case where $\lambda<0$:

The condition
$\varphi^{\prime}(0)=A \sqrt{-\lambda}=0$
implies that $A=0$ so that $\varphi(x)=B e^{-x^{2}} \cosh (x \sqrt{-\lambda})$. The condition
$\varphi^{\prime}(1)=-2 B e^{-1} \cosh (\sqrt{-\lambda})+B e^{-1} \sqrt{-\lambda} \sinh (\sqrt{-\lambda})=0$
implies that
$\operatorname{coth}(\sqrt{-\lambda})=\frac{\sqrt{-\lambda}}{2}$
which has one solution when $\lambda_{1} \approx-4.266$, shown here:
$\varphi_{1}(x)=B e^{-x^{2}} \cosh \left(x \sqrt{-\lambda_{1}}\right)$
v) Boundary conditions for the case where $\lambda=0$:
$\varphi^{\prime}(0)=A e^{0}-2 A(0)^{2} e^{0}-2 B(0) e^{0}=0$
implies $A=0$
so that $\varphi(x)=B e^{-x^{2}}$
$\varphi^{\prime}(1)=-2 B(1) e^{-1}=0$
implies that $B=0$, so that this case gives only the trivial solution $\varphi(x)=0$
vi) Boundary conditions for the case where $\lambda>0$:

The condition
$\varphi^{\prime}(0)=A \sqrt{\lambda}=0$
implies $A=0$
and that $\varphi(x)=B e^{-x^{2}} \cos (x \sqrt{\lambda})$.
The condition
$\varphi^{\prime}(1)=-2 B e^{-1} \cos (\sqrt{\lambda})-B e^{-1} \sqrt{\lambda} \sin (1 \sqrt{\lambda})=0$
implies that
$\cot (\sqrt{\lambda})=-\frac{\sqrt{\lambda}}{2}$

This has an infinite number of eigenvalue solutions
$\lambda_{n} \in\{6.045,35.514,84.842, \ldots\}$
with corresponding eigenfunctions
$\varphi_{n}(x)=B e^{-x^{2}} \cos \left(x \sqrt{\lambda_{n}}\right)$
b) Plots of eigenfunctions

We can see that when listed in order of increasing eigenvalues, the nth eigenfunction has $n-1$ zeros on the interval $(0,1)$ as predicted by Sturm-Liouville theory.
c) Eigenfunction expansion of $f(x)$

In order to compute the coefficients a_{n} in
$f(x)=\sum_{n=1}^{\infty} \varphi_{n}(x)$,
we need to take advantage of the orthogonality of the eigenfunctions with respect to the inner product
$\left\langle\varphi_{m}, \varphi_{n}\right\rangle=\int_{0}^{1} \varphi_{m} \varphi_{n} w(x) \mathrm{d} x$
where the weight function $w(x)$ appears multiplied by $-\lambda \varphi(x)$ when the differential equation is written in standard Sturm-Liouville form.
$\left(s(x) \varphi^{\prime}\right)^{\prime}+p(x) \varphi=-\lambda w(x) \varphi$
We can rewrite it in this form by multiplying both sides of the original differential equation by an integrating factor
$\mu(x)=e^{\int 4 x \mathrm{~d} x}=e^{2 x^{2}}$,
where the integrand ($4 x$ in this case) is the function multplied by the $\varphi^{\prime}(x)$ term.
This results in
$e^{2 x^{2}} \varphi^{\prime \prime}(x)+4 x e^{2 x^{2}} \varphi^{\prime}(x)+\left(4 x^{2}+2+\lambda\right) e^{2 x^{2}} \varphi(x)=0$,
or, after a bit of rearrangement
$\left(e^{2 x^{2}} \varphi^{\prime}(x)\right)^{\prime}+\left(4 x^{2}+2+\right) e^{2 x^{2}}=-\lambda e^{2 x^{2}} \varphi(x)$
So $w(x)=e^{2 x^{2}}$.
Applying this "dot product" to $f(x)$ gives
$\int_{0}^{1} \varphi_{n} f(x) e^{2 x^{2}} \mathrm{~d} x=\sum_{n=1}^{\infty} a_{n} \int_{0}^{1} \varphi_{m} \varphi_{n} e^{2 x^{2}} \mathrm{~d} x=a_{n} \int_{0}^{1} \varphi_{n}^{2} e^{2 x^{2}} \mathrm{~d} x$
(since all the $m \neq n$ terms in the summation are equal to zero)
implying that
$a_{n}=\frac{\int_{0}^{1} \varphi_{n} f(x) e^{2 x^{2}} \mathrm{~d} x}{\int_{0}^{1} \varphi_{n}^{2} e^{2 x^{2}} \mathrm{~d} x}$
where the integral in the denominator is given by

$$
\begin{aligned}
& \int_{0}^{1} \varphi_{n}^{2} e^{2 x^{2}} \mathrm{~d} x=\int_{0}^{1} B^{2} e^{-2 x^{2}} \cos ^{2}\left(x \sqrt{\lambda_{n}}\right) e^{2 x^{2}} \mathrm{~d} x=B^{2} \int_{0}^{1} \cos ^{2}\left(x \sqrt{\lambda_{n}}\right) \mathrm{d} x \\
& =\frac{B^{2}}{2} \int_{0}^{1}\left(1+\cos \left(2 x \sqrt{\lambda_{n}}\right)\right) \mathrm{d} x=\frac{B^{2}}{2}\left(1+\frac{\sin \left(2 \sqrt{\lambda_{n}}\right)}{2 \sqrt{\lambda_{n}}}\right)
\end{aligned}
$$

