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Here is the differential equation to be solved:

This can be rewritten in Sturm-Liouville form by use of an integrating factor 

This is important because we need to know the weight function w(x) which appears on the right
side of the equation as In this case, the weight function is the same as the integrating 
factor.
You can solve the differential equation by substituting a trial solution of the form 
y =

This can be rewritten in a more visually appealing way by making use of Euler's formula. 
(Note that since we are interested in the interval (0, 1), the square root term is imaginary.
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Applying the initial conditions tells us that D = 0, and that 

Rewriting again with these substitutions gives us the final form of our eigenfunctions

Here is a procedure to calculate the first 10 eigenfunctions

By plotting a few of them, we can see that they satisfy the initial conditions while
having the requisite number of zeros for solutions to a Sturm-Liouville problem
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We can also verify the orthogonality condition holds. For example:

0

1
2

We need to use a weighted sum of eigenfunctions to approximate f(x) = 

e =

Applying the inner product operator to both sides

,

our equation becomes
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Applying the orthogonality condition, which states

,

 and solving for  C  C

Actually, this integral is easy to do by hand since the exponential terms all cancel out. The solution
can be written as:

(which results in the same values as the integral equation)
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Now we approximate by plugging our eigenvalues and eigenfunctions into the summation 
formula:

Let us plot the approximation and the function to be approximated on the same axes
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We can see that this is a pretty good approximation everywhere except near x = 1 where 
the function is discontinuous.


