Question 5 (12 points)
Consider the vector field $\mathbf{F}=\left(3 x+y^{2}\right) \mathbf{i}+e^{z} \mathbf{j}+x z \mathbf{k}$. Let S_{1} be the part of the sphere $x^{2}+y^{2}+z^{2}=9$ above the $x y$-plane, and let S_{2} be the part of the paraboloid $z=x^{2}+y^{2}-9$ below the $x y$-plane, both with the upward orientation. Compute the difference

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}
$$

between the flux of \mathbf{F} across S_{1} and the flux of \mathbf{F} across S_{2}.

Answer:

Although it is possible to compute the fluxes directly, a simpler approach is to apply the divergence theorem to the volumes enclosed by the curves and the $x y$-plane:

$$
\oiiint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\oiiint_{\int_{V}} \operatorname{div}(\mathbf{F}) \mathrm{d} V
$$

First we calculate the divergence:
$\boldsymbol{\nabla} \cdot \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}=3+x$
To take advantage of the symmetry of the region S_{1}, we rewrite this in spherical coordinates:
$\nabla \cdot \mathbf{F}=3+\rho \cos \phi \cos \theta$
Integrating this over the volume of the half-sphere, we have

$$
\begin{aligned}
D_{1} & =\int_{0}^{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}(3+\rho \cos \phi \cos \theta) \rho^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} \rho \\
& =3 \int_{0}^{3} \rho^{2} \mathrm{~d} \rho \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\frac{\pi}{2}} \sin \phi \mathrm{~d} \phi \\
& +\int_{0}^{3} \rho^{3} \mathrm{~d} \rho \int_{0}^{2 \pi} \cos \theta \mathrm{~d} \theta \int_{0}^{\frac{\pi}{2}} \sin \phi \cos \phi \mathrm{~d} \phi
\end{aligned}
$$

The second term vanishes due to the periodicity of the θ integral. The first can be computed with straightforward techniques. Its value is 54π.

Meanwhile, the integral over the paraboloidal region below the $x y$-plane can most easily be computed in cylindrical coordinates.

$$
\begin{aligned}
D_{2} & =\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{r^{2}-9}(3+r \cos \theta) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta \\
& =3 \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{3} r \mathrm{~d} r \int_{0}^{r^{2}-9} \mathrm{~d} z+\int_{0}^{2 \pi} \cos \theta \mathrm{~d} \theta \int_{0}^{3} r^{2} \mathrm{~d} r \int_{0}^{r^{2}-9} \mathrm{~d} z
\end{aligned}
$$

$$
=-\frac{243 \pi}{2}
$$

Where again the second integral has vanished due to periodicity.

Finally, we are asked to compute the difference in the fluxes, so we compute

$$
\iint_{S_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}-\iint_{S_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=54 \pi-\left(\frac{243 \pi}{2}\right)=\frac{351 \pi}{2}
$$

