Q: Let C be the rim of the rectangle with vertices $(0,0),(2,0),(2,1)$, and $(0,1)$. Use Green's formula to compute the integral

$$
\int_{C}\left(x^{2} y^{2} \mathrm{~d} x+x^{3} y \mathrm{~d} y\right)
$$

A: Green's theorem relates a path integral along a curve C to an area integral on a region A.

$$
\oint_{C}(L \mathrm{~d} x+M \mathrm{~d} y)=\iint_{A}\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

The origin of this formula is a bit murky, but it is a special case of the Kelvin-Stokes theorem which states that the path integral of a vector field along a closed curve is equal to the integral of the curl over the enclosed area.

Applying this formula to our rectangle is straightforward. Identifying $M=x^{3} y$ and $L=x^{2} y^{2}$ and computing the partial derivatives, we have

$$
\begin{aligned}
\iint_{A}\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{1} \int_{0}^{2}\left(3 x^{2} y-2 x^{2} y\right) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1}\left(\left[x^{3} y-\frac{2}{3} x^{3} y\right]_{0}^{2}\right) \mathrm{d} y \\
& =\int_{0}^{1}\left(8 y-\frac{16}{3} y\right) \mathrm{d} y \\
& =\left[4 y^{2}-\frac{8}{3} y^{2}\right]_{0}^{1}=4-\frac{8}{3}=\frac{4}{3}
\end{aligned}
$$

Note that the order of integration does not matter.
We can confirm this result by computing the path integral along the four edges of the rectangle:

$$
\begin{aligned}
& (0,0) \longrightarrow(2,0) \quad(2,0) \longrightarrow(2,1) \quad(2,1) \longrightarrow(0,1) \quad(0,1) \longrightarrow(0,0) \\
& \int_{0}^{2} x^{2}\left(0^{2}\right) \mathrm{d} x+\int_{0}^{1}(2)^{3} y \mathrm{~d} y+\int_{2}^{0} x^{2}(1)^{2} \mathrm{~d} x+\int_{1}^{0}(0)^{3} y \mathrm{~d} y \\
& =0 \quad 4 \quad \begin{array}{lllll}
3 & - & \frac{8}{3} & + & 0 \\
\hline
\end{array}
\end{aligned}
$$

