Q: Solve the second-order linear homogeneous ordinary differential equation

$$
x y^{\prime \prime}-\left(12 x^{2}+1\right) y^{\prime}+36 x^{3} y=0
$$

A: We begin by guessing the general form of a solution. Since the coefficient functions $\left(36 x^{3},-12 x^{2}-1, x\right)$ are polynomials whose order decreases as the number of derivatives increases, we guess that $y(x)$ is a function with polynomials coefficients that increase each time we take a derivative.

One such function with this property is

$$
y(x)=e^{k x^{2}}
$$

Computing the derivatives

$$
\begin{gathered}
y^{\prime}(x)=2 k x e^{k x^{2}} \\
y^{\prime \prime}=2 k\left(2 k x^{2}+1\right) e^{k x^{2}}
\end{gathered}
$$

and substituting into the ODE, we have

$$
2 k x\left(2 k x^{2}+1\right) e^{k x^{2}}-2 k x\left(12 x^{2}+1\right) e^{k x^{2}}+36 x^{3} e^{k x^{2}}=0
$$

which simplifies to

$$
\begin{gathered}
4 k^{2} x^{3}+2 k x-24 k x^{3}-2 k x+36 x^{3}=0 \\
4 x^{3}\left(k^{2}-6 k+9\right)=0
\end{gathered}
$$

This equation is satisfied if $k=3$, so therefore

$$
y_{1}(x)=e^{3 x^{2}}
$$

is a solution to the differential equation. We can find another independent solution by using the formula

$$
y_{2}=y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int P(x) \mathrm{d} x} \mathrm{~d} x
$$

where

$$
P(x)=-\frac{12 x^{2}+1}{x}
$$

is the coefficient function of the $y^{\prime}(x)$ term of the ODE when both sides are divided by x so that the
$y^{\prime \prime}(x)$ coefficient is 1 . Completing the calculation, we have
$y_{2}=e^{3 x^{2}} \int e^{-6 x^{2}} e^{\int\left(12 x+\frac{1}{x}\right) \mathrm{d} x} \mathrm{~d} x=e^{3 x^{2}} \int e^{-6 x^{2}} e^{6 x^{2}+\ln |x|} \mathrm{d} x=e^{3 x^{2}} \int x \mathrm{~d} x=\frac{x^{2}}{2} e^{3 x^{2}}$
Therefore the set

$$
B=\left\{e^{3 x^{2}}, x^{2} e^{3 x^{2}}\right\}
$$

is a basis for the solution space and the general solution can be written

$$
y(x)=c_{1} e^{3 x^{2}}+c_{2} x^{2} e^{3 x^{2}}
$$

