Q: Find an integrating factor as a function of y only that reduces the following differential equation to an exact one.

$$
\begin{equation*}
\left(2 x y^{2}+y\right) \mathrm{d} x-x \mathrm{~d} y=0 \tag{1}
\end{equation*}
$$

A: Let $M=\frac{\partial V}{\partial x}=2 x y^{2}+y$ and $N=\frac{\partial V}{\partial y}=-x$ where $V(x, y)=$ constant. To test whether the original equation is exact, we compute

$$
\begin{equation*}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=(4 x y+1)-(-1)=4 x y+2 \tag{2}
\end{equation*}
$$

Since this is non-zero, that means our differential is inexact. We multiply both sides of equation (1) by a new function $\mu(y)$

$$
\begin{equation*}
\left(2 x y^{2}+y\right) \mu(y) \mathrm{d} x-x \mu(y) \mathrm{d} y \tag{3}
\end{equation*}
$$

and recompute our test function (2), setting the right hand side equal to zero.

$$
\begin{equation*}
\frac{\partial(\mu M)}{\partial y}-\frac{\partial(\mu N)}{\partial x}=0 \tag{4}
\end{equation*}
$$

This becomes

$$
\begin{equation*}
\mu \frac{M}{\partial y}+M \frac{\mathrm{~d} \mu}{\mathrm{~d} y}-\mu \frac{\partial N}{\partial x}=0 \tag{5}
\end{equation*}
$$

(Notice that the $\partial \mu / \partial x$ term is missing since the problem assumes μ is independent of x.) Continuing with our computation, we get

$$
\begin{equation*}
(4 x y+1) \mu+\left(2 x y^{2}+y\right) \frac{\mathrm{d} \mu}{\mathrm{~d} y}-\mu(-1)=0 \tag{6}
\end{equation*}
$$

This differential equation is separable. Simplifying and solving for μ gives

$$
\begin{gather*}
\left(2 x y^{2}+y\right) \frac{\mathrm{d} \mu}{\mathrm{~d} y}=-(4 x y+2) \mu \tag{7}\\
\frac{\mathrm{d} \mu}{\mu}=-\frac{4 x y+2}{2 x y^{2}+y} \mathrm{~d} y \\
\frac{\mathrm{~d} \mu}{\mu}=-\frac{2}{y} \mathrm{~d} y \\
\ln \mu=-2 \ln y \\
\mu=e^{-2 \ln y} \\
\mu=y^{-2} \tag{8}
\end{gather*}
$$

Supplement 1: Solving the equation

Substituting our solution (8) into equation (3) gives

$$
\begin{equation*}
\left(2 x+\frac{1}{y}\right) \mathrm{d} x-\frac{x}{y^{2}} \mathrm{~d} y \tag{9}
\end{equation*}
$$

We can test that this is indeed exact by computing

$$
\begin{equation*}
\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=0-\frac{1}{y^{2}}+\frac{1}{y^{2}}=0 \tag{10}
\end{equation*}
$$

Since the equation is exact, we can write (9) as the total differential

$$
\begin{equation*}
d V=M \mathrm{~d} x+N \mathrm{~d} y \tag{11}
\end{equation*}
$$

of some potential function $V(x, y)=$ constant where

$$
\begin{equation*}
M=\frac{\partial V}{\partial x}=2 x+\frac{1}{y} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
N=-\frac{x}{y^{2}}=\frac{\partial V}{\partial y} \tag{13}
\end{equation*}
$$

To compute V, let us integrate (13)

$$
\begin{equation*}
V(x, y)=\int \frac{\partial V}{\partial y} \mathrm{~d} y=-\int \frac{x}{y^{2}} \mathrm{~d} y=\frac{x}{y}+\phi(x)+C \tag{14}
\end{equation*}
$$

Here $\phi(x)$ is some unknown function of x. To find ϕ, we differentiate both sides of (14) with respect to x and set the result equal to (12).

$$
\begin{equation*}
\frac{1}{y}+\phi^{\prime}(x)=2 x+\frac{1}{y} \tag{15}
\end{equation*}
$$

From this, we can see that $\phi^{\prime}(x)=2 x$ and therefore $\phi(x)=x^{2}$.
Finally, we substitute ϕ back into (12) and solve for y.

$$
\begin{gather*}
\frac{x}{y}+x^{2}+C=\text { constant } \\
y(x)=-\frac{x}{x^{2}+C} \tag{16}
\end{gather*}
$$

This is the general solution to the differential equation (1).

Supplement 2: An easier way to solve

It is not necessary to make the differential exact in order to solve it. Rearranging equation (1), we compute

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x y^{2}+y}{x}=2 y^{2}+\frac{y}{x} \tag{17}
\end{equation*}
$$

Through inspired guesswork, we introduce a new variable v such that

$$
\begin{equation*}
v=\frac{y}{x} \tag{18}
\end{equation*}
$$

Accordingly, we see that

$$
\begin{equation*}
y=v x \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} \tag{20}
\end{equation*}
$$

We can eliminate the variable y by substituting (19) and (20) into (17).

$$
\begin{align*}
v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} & =2 v^{2} x^{2}+v \\
\frac{\mathrm{~d} v}{\mathrm{~d} x} & =2 v^{2} x \tag{21}
\end{align*}
$$

This equation is easily solved by separation of variables.

$$
\begin{gather*}
\frac{\mathrm{d} v}{v^{2}}=2 x \mathrm{~d} x \tag{22}\\
-\frac{1}{v}=x^{2}+C \\
v=-\frac{1}{x^{2}+C} \tag{23}
\end{gather*}
$$

We complete the problem by substituting (23) into (19).

$$
\begin{equation*}
y=-\frac{x}{x^{2}+C} \tag{24}
\end{equation*}
$$

