Question: Use an integrating factor to solve the following first-order differential equation

$$
\begin{equation*}
x^{3} y^{\prime}-x^{2} y=3 x \tag{1}
\end{equation*}
$$

Solution: The goal is to manipulate the left side of (1) to become the derivative of a product. First, let's simplify by dividing both sides by x^{3}.

$$
\begin{equation*}
y^{\prime}-\frac{1}{x} y=\frac{3}{x^{2}} \tag{2}
\end{equation*}
$$

Next we multiply both sides by the (unknown) integrating factor $\mu(x)$

$$
\begin{equation*}
\mu y^{\prime}+-\frac{\mu}{x} y=\frac{3}{x^{2}} \mu \tag{3}
\end{equation*}
$$

By definition, $\mu(x)$ has the property that the left side of (3) will become

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=\mu y^{\prime}+\mu^{\prime} y \tag{4}
\end{equation*}
$$

Comparing the RHS of (4) with the LHS of (3) with the last, we see that

$$
\begin{equation*}
\mu^{\prime}=-\frac{\mu}{x} \tag{5}
\end{equation*}
$$

This is a separable differential equation that can be solved as follows:

$$
\begin{align*}
\frac{\mathrm{d} \mu}{\mathrm{~d} x} & =-\frac{\mu}{x} \\
\frac{\mathrm{~d} \mu}{\mu} & =-\frac{\mathrm{d} x}{x} \\
\ln \mu & =-\ln x \\
\mu & =e^{-\ln x} \\
\mu & =\left(e^{\ln x}\right)^{-1} \\
\mu & =x^{-1} \tag{6}
\end{align*}
$$

(Note that it is okay to ignore the constant of integration $(+C)$ since we only need a solution-not the general solution.) Now that we have solved for $\mu(x)$, we can, according to equation (4), replace the LHS of (3) with $\frac{\mathrm{d}}{\mathrm{d} x}(\mu y)$. This results in

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{x} y\right)=\frac{3}{x^{3}} \tag{7}
\end{equation*}
$$

This can be easily solved by integrating both sides:

$$
\begin{align*}
y & =x \int \frac{3}{x^{3}} \mathrm{~d} x \\
& =3 x\left(-\frac{1}{2} x^{-2}+C\right) \\
& y=-\frac{3}{2 x}+C x \tag{8}
\end{align*}
$$

Final note: In the future, to save time solving for $\mu(x)$, we can memorize that that if the differential equation is written in the form

$$
\begin{equation*}
y^{\prime}+p(x) y=q(x) \tag{9}
\end{equation*}
$$

then the integrating factor can be written

$$
\begin{equation*}
\mu(x)=e^{-\int p(x) \mathrm{d} x} \tag{10}
\end{equation*}
$$

and the general solution will be

$$
\begin{equation*}
y=e^{\int p(x) \mathrm{d} x} \int q(x) e^{-\int p(x) \mathrm{d} x} \mathrm{~d} x \tag{11}
\end{equation*}
$$

