Q: Solve 3"’ (t) — 3y'(¢) + 2y(t) = 1 with initial conditions y(0) = 2,¢'(0) = 1
A: Take the Laplace transform of both sides
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The partial fraction decomposition is completed as follows:
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The inverse-Laplace transform of this is
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Q: Solve y''(t) — 3y(t) + 2y(t) = 1 with initial conditions y(0) = 2,%'(0) = 1

A: Start by solving characteristic polynomial of the homogeneous system:

M3\ +2=0— A€ {1,2}

This gives the complimentary solutions

Y. = Aet + Be?t

We assume a particular solution of the form

Yp = Yc + C where C is an unknown constant to match the RHS of the original ODE

Substituting this into the ODE gives
C 1
O+—-=1—0C= 2
+ 2 2
Now that we know the general solution

1
y(t) = Ae' + Be*' + 5

y'(t) = Ae! + 2Be?t

we apply the initial conditions

1
2=A+B+§

1=A+2B
which has solution
A=2
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Therefore we have

1, 1
26

t) = 2t —
y(t) = 2e 5

This matches the solution from the previous page.



