Problem: Solve the ODE

$$
\begin{equation*}
y^{\prime \prime}+2 y\left(y^{\prime}\right)^{3}=0 \tag{1}
\end{equation*}
$$

Solution:

Start by introducing a new function $v(y)$ such that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=v \tag{2}
\end{equation*}
$$

This implies

$$
\begin{equation*}
y^{\prime \prime}=\frac{\mathrm{d} v}{\mathrm{~d} x} \tag{3}
\end{equation*}
$$

However, since x does not appear in the original ODE, it is undesirable to introduce a new variable.
Accordingly we rewrite equation (3) using the chain rule.

$$
\begin{equation*}
y^{\prime \prime}=\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{\mathrm{d} v}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=v \frac{\mathrm{~d} v}{\mathrm{~d} y} \tag{4}
\end{equation*}
$$

Substituting (2) and (4) into (1), we find

$$
\begin{equation*}
v \frac{\mathrm{~d} v}{\mathrm{~d} y}+2 y v^{3}=0 \tag{5}
\end{equation*}
$$

Equation (5) is a separable first order ODE, so we can solve in the usual manner:

$$
\begin{gather*}
\frac{\mathrm{d} v}{v^{2}}=-2 y \mathrm{~d} y \tag{6}\\
-\frac{1}{v}=-y^{2}+C \tag{7}\\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=v=\frac{1}{y^{2}+C} \tag{8}
\end{gather*}
$$

We can now compute $y(x)$ by separating x and y and integrating both sides.

$$
\begin{align*}
& \int\left(y^{2}+C\right) \mathrm{d} y=\int \mathrm{d} x \tag{9}\\
& \frac{1}{2} y^{3}+C y+D=x \tag{10}
\end{align*}
$$

This is a cubic equation, so it can in principle be solved for $y(x)$; however the process is cumbersome, so I will not pursue it.

