Problem: Solve the ODE

$$
\begin{equation*}
2 y y^{\prime \prime}=y^{2}+\left(y^{\prime}\right)^{2} \tag{1}
\end{equation*}
$$

Solution: This is a second order differential equation, so we begin by introducing a new function $v(y)$ such that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=v \tag{2}
\end{equation*}
$$

This implies

$$
\begin{equation*}
y^{\prime \prime}=\frac{\mathrm{d} v}{\mathrm{~d} x} \tag{3}
\end{equation*}
$$

However, since the independent variable x does not appear in the original ODE, it is undesirable to introduce an explicit x dependency. Accordingly we rewrite equation (3) using the chain rule:

$$
\begin{equation*}
y^{\prime \prime}=\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{\mathrm{d} v}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=v \frac{\mathrm{~d} v}{\mathrm{~d} y} \tag{4}
\end{equation*}
$$

Substituting (2) and (4) into (1), we find

$$
\begin{equation*}
2 y v \frac{\mathrm{~d} v}{\mathrm{~d} y}=y^{2}+v^{2} \tag{5}
\end{equation*}
$$

Dividing both sides by $y v$ converts our equation into

$$
\begin{equation*}
2 \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{y}{v}+\frac{v}{y} \tag{6}
\end{equation*}
$$

This equation is homogeneous in the sense that we can eliminate v by introducing a new function w such that

$$
\begin{equation*}
w=\frac{v}{y} \tag{7}
\end{equation*}
$$

This means that

$$
\begin{equation*}
v=w y \tag{8}
\end{equation*}
$$

and (applying the product rule),

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} y}=y \frac{\mathrm{~d} w}{\mathrm{~d} y}+w \tag{9}
\end{equation*}
$$

Substituting (8) and (9) into (6) yields

$$
\begin{equation*}
2 y \frac{\mathrm{~d} w}{\mathrm{~d} y}+2 w=\frac{1}{w}+w \tag{10}
\end{equation*}
$$

which is a separable differential equation. After a bit of algebraic rearrangement, (10) turns into

$$
\begin{equation*}
\frac{-2 w \mathrm{~d} w}{1-w^{2}}=-\frac{\mathrm{d} y}{y} \tag{11}
\end{equation*}
$$

Integrating both sides, we have

$$
\begin{equation*}
\ln \left(1-w^{2}\right)=-\ln y+\ln A \tag{12}
\end{equation*}
$$

where A is an arbitrary constant. This simplifies to

$$
\begin{equation*}
1-w^{2}=\frac{A}{y} \tag{13}
\end{equation*}
$$

Now we work backward. Substituting (7) into (13), and multiplying both sides by y^{2} yields

$$
\begin{equation*}
y^{2}-v^{2}=A y \tag{14}
\end{equation*}
$$

Replacing v with $\mathrm{d} y / \mathrm{d} x$, according to equation (2), we have another separable differential equation which can be rearranged as follows:

$$
\begin{gather*}
y^{2}-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=A y \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\sqrt{y^{2}-A y} \\
\frac{\mathrm{~d} y}{\sqrt{y^{2}-A y}}=\mathrm{d} x \tag{15}
\end{gather*}
$$

Making a change of variables

$$
\begin{equation*}
u=\sqrt{\frac{y}{A}} \quad \longrightarrow \quad y=A u^{2} \quad \longrightarrow \quad \mathrm{~d} y=2 A \mathrm{~d} u \tag{16}
\end{equation*}
$$

and integrating, we get

$$
\begin{equation*}
\int \frac{2 \mathrm{~d} u}{\sqrt{u^{2}-1}}=\int \mathrm{d} x \tag{17}
\end{equation*}
$$

Using the fact that $\int \frac{\mathrm{d} u}{\sqrt{u^{2}-1}}=\cosh ^{-1} u$, this becomes

$$
\begin{equation*}
2 \cosh ^{-1} \sqrt{\frac{y}{A}}=x+C \tag{18}
\end{equation*}
$$

Finally, by solving for y, we arrive at the general solution:

$$
\begin{equation*}
y=A \cosh ^{2}\left(\frac{x+C}{2}\right) \tag{19}
\end{equation*}
$$

Side note:

You may have noticed through trial and error that $y=e^{x}$ and $y=e^{-x}$ are also solutions to (1). We can reconcile this fact with our general solution by noting that e^{x} and e^{-x} are the limits of (19) as A approaches e^{-C} and while C approaches ∞ and $-\infty$, respectively.

Given that e^{x} and e^{-x} are solutions, you might be tempted to guess that

$$
y=A e^{x}+B e^{-x}
$$

is also a solution, but this turns out not to be the case. If (1) were a linear ODE, this would be true, but it is not.

