Q: Find a one-parameter family of solutions for the following first-order differential equation:

$$
\begin{equation*}
\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right) \mathrm{d} x-\left(x y \sqrt{x^{2}+y^{2}}\right) \mathrm{d} y=0 \tag{1}
\end{equation*}
$$

A: We start by solving this for $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\begin{align*}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}} \\
& =\frac{x^{2}}{y \sqrt{x^{2}+y^{2}}}+\frac{y}{x} \tag{2}
\end{align*}
$$

Let us rewrite y in terms of a new function v

$$
\begin{equation*}
y=v x \tag{3}
\end{equation*}
$$

Differentiating each side of (4) using the product rule gives’

$$
\begin{equation*}
y^{\prime}=v^{\prime} x+v \tag{4}
\end{equation*}
$$

Substituting (3) and (4) into (2) results in

$$
\begin{equation*}
v^{\prime} x+v=\frac{x^{2}}{v x \sqrt{x^{2}+v^{2} x^{2}}}+v \tag{5}
\end{equation*}
$$

This simplifies nicely to

$$
\begin{equation*}
v^{\prime} x=\frac{1}{\sqrt{1+v^{2}}} \tag{6}
\end{equation*}
$$

Which is a separable differential equation

$$
\begin{equation*}
\sqrt{1+v^{2}} \mathrm{~d} v=\frac{\mathrm{d} x}{x} \tag{7}
\end{equation*}
$$

The left side is a famous integral which can be found in tables. Integrating both sides results in

$$
\begin{equation*}
\frac{1}{2} v \sqrt{v^{2}+1}+\frac{1}{2} \sinh ^{-1}(v)=\ln |x|+C \tag{8}
\end{equation*}
$$

Or

$$
\frac{1}{2}\left(\frac{y}{x}\right) \sqrt{1+\left(\frac{y}{x}\right)}+\frac{1}{2} \sinh ^{-1}\left(\frac{y}{x}\right)=\ln |x|+C
$$

