Problem: Find the solution to the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=t H(t-2), \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{1}
\end{equation*}
$$

Solution: We begin by taking the Laplace transform of both sides of (1), using the usual rules for the Laplace transforms of derivatives and the fact that $\mathcal{L}\{t f(t)\}=-F^{\prime}(\lambda)$

$$
\begin{equation*}
\lambda^{2} Y(\lambda)-\lambda y(0)-y^{\prime}(0)+3 \lambda Y(\lambda)-3 y(0)+2 Y(\lambda)=-\frac{\mathrm{d}}{\mathrm{~d} \lambda} \frac{e^{-2 \lambda}}{\lambda} \tag{2}
\end{equation*}
$$

Next we substitute our initial conditions into (2) and compute the derivative on the right-hand side

$$
\begin{equation*}
\lambda^{2} Y(\lambda)-\lambda+3 \lambda Y(\lambda)-3+2 Y(\lambda)=\frac{e^{-2 \lambda}(2 \lambda+1)}{\lambda^{2}} \tag{3}
\end{equation*}
$$

Solving (3) for $Y(\lambda)$ and factoring the denominators yields

$$
\begin{equation*}
Y(\lambda)=\frac{\lambda+3}{(\lambda+1)(\lambda+2)}+\frac{e^{-2 \lambda}(2 \lambda+1)}{\lambda^{2}(\lambda+1)(\lambda+2)} \tag{4}
\end{equation*}
$$

At this point, we have technically completed the problem, but it is usually desirable to rewrite the solution in terms of the original variable t. The inverse-Laplace transform of the first fraction will yield the homogeneous solution $y_{h}(t)$ which solves $y^{\prime \prime}+3 y^{\prime}+2=0$ subject to the initial conditions.
Meanwhile, the second fraction will yield the particular solution $y_{p}(t)$, which is determined by the right-hand side of equation (1). Since $\mathcal{L}^{-1}\left\{e^{-a \lambda} F(\lambda)\right\}=f(t-a) H(t-a)$, it is convenient to write the general solution as

$$
\begin{equation*}
y(t)=y_{h}(t)+y_{p}(t-2) H(t-2) \tag{5}
\end{equation*}
$$

where $y_{p}(t)$ is given by

$$
\begin{equation*}
y_{p}(t)=\mathcal{L}^{-1}\left\{\frac{2 \lambda+1}{(\lambda+1)(\lambda+2)}\right\} \tag{6}
\end{equation*}
$$

Our strategy is to compute the inverse-Laplace transforms using the residue theorem

$$
\begin{equation*}
y(t)=\mathcal{L}^{-1}\{Y(\lambda)\}=\sum_{\text {poles }} \operatorname{Res}\left(Y(\lambda) e^{\lambda t}\right) \tag{7}
\end{equation*}
$$

where the sum is over all the set of poles (i.e. roots of the denominator) of $Y(\lambda)$. Generally speaking, the residue of a function $G(\lambda)$ with respect to a pole λ_{i} is given by given by

$$
\begin{equation*}
\operatorname{Res}\left(G(\lambda), \lambda_{i}\right)=\frac{1}{(n-1)!} \lim _{\lambda \rightarrow \lambda_{i}} \frac{\mathrm{~d}^{n-1}}{\mathrm{~d} \lambda^{n-1}}\left(\lambda-\lambda_{i}\right)^{n} G(\lambda) \tag{8}
\end{equation*}
$$

In the particular case where we have a pole of order $n=1$, this simplifies to

$$
\begin{equation*}
\operatorname{Res}\left(G(\lambda), \lambda_{i}\right)=\lim _{\lambda \rightarrow \lambda_{i}}\left(\lambda-\lambda_{i}\right) G(\lambda) \tag{9}
\end{equation*}
$$

The effect is to evaluate the fraction at the pole after removing the corresponding factor from the denominator. Moreover, if $n=2$, the residue becomes

$$
\begin{equation*}
\operatorname{Res}\left(G(\lambda), \lambda_{i}\right)=\lim _{\lambda \rightarrow \lambda_{i}} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left(\lambda-\lambda_{i}\right)^{2} G(\lambda) \tag{10}
\end{equation*}
$$

Returning to equation (4), we observe that the $y_{h}(t)$-determining fraction in $Y(\lambda)$ has two poles:

$$
\begin{aligned}
& \lambda_{1}=-1\left(1^{\text {st }} \text { order }\right) \\
& \lambda_{2}=-2\left(1^{\text {st }} \text { order }\right)
\end{aligned}
$$

and therefore its inverse Laplace transform is given by

$$
\begin{equation*}
y_{h}(t)=\operatorname{Res}\left(Y(\lambda) e^{\lambda t},-1\right)+\operatorname{Res}\left(Y(\lambda) e^{\lambda t},-2\right) \tag{11}
\end{equation*}
$$

We now apply formulas (9) and (10) to see that

$$
\begin{equation*}
y_{h}(t)=\lim _{\lambda \rightarrow-1} \frac{e^{\lambda t}(\lambda+3)}{\lambda+2}+\lim _{\lambda \rightarrow-2} \frac{e^{\lambda t}(\lambda+3)}{\lambda+1} \tag{12}
\end{equation*}
$$

resulting in

$$
y_{h}(t)=2 e^{-t}-e^{-2 t}
$$

To compute $y_{p}(t)$, we take the inverse-Laplace transform in equation (6). This one has three poles:

$$
\begin{gathered}
\lambda_{1}=0\left(2^{\text {nd }} \text { order }\right) \\
\lambda_{2}=-1\left(1^{\text {st }} \text { order }\right) \\
\lambda_{3}=-2\left(1^{\text {st }} \text { order }\right)
\end{gathered}
$$

Again applying formulas (9) and (10) we have

$$
\begin{equation*}
y_{p}(t)=\lim _{\lambda \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} \lambda} \frac{e^{\lambda t}(2 \lambda+1)}{(\lambda+1)(\lambda+2)}+\lim _{\lambda \rightarrow-1} \frac{e^{\lambda t}(2 \lambda+1)}{\lambda^{2}(\lambda+2)}+\lim _{\lambda \rightarrow-2} \frac{e^{\lambda t}(2 \lambda+1)}{\lambda^{2}(\lambda+1)} \tag{13}
\end{equation*}
$$

After computing the derivative and taking the limit, this becomes

$$
\begin{equation*}
y_{p}(t)=\frac{t}{2}+\frac{1}{4}-e^{-t}+\frac{3}{4} e^{-2 t} \tag{14}
\end{equation*}
$$

Now that we have computed both $y_{h}(t)$ and $y_{p}(t)$, we can substitute these into (5) to get our general solution.

$$
\begin{equation*}
y(t)=2 e^{-t}-e^{-2 t}+\left[\frac{t}{2}-\frac{3}{4}-e^{-(t-2)}+\frac{3}{4} e^{-2(t-2)}\right] H(t-2) \tag{15}
\end{equation*}
$$

