Q: Solve the initial value problem

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{2 x}=\frac{x}{y^{3}} \quad y(1)=2 \tag{1}
\end{equation*}
$$

A: The two fractions suggests that we try a substitution of the form

$$
\begin{equation*}
y=v x^{n} \tag{2}
\end{equation*}
$$

where v is some unknown function of x and n is some unknown exponent, and hope that we can combine the fractions into a single term. Applying the product rule to (2), we have

$$
\begin{equation*}
y^{\prime}=v^{\prime} x^{n}+n v x^{n-1} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1) gives us

$$
v^{\prime} x^{n}+n v x^{n-1}+\frac{v x^{n}}{2 x}=\frac{x}{v^{3} x^{3 n}}
$$

or, after rewriting,

$$
\begin{equation*}
v^{\prime} x^{n}=v^{-3} x^{1-3 n}-\left(n+\frac{1}{2}\right) v x^{n-1} \tag{4}
\end{equation*}
$$

If the powers of the x-terms on the right hand side are equal, we can simplify. Therefore we choose

$$
\begin{equation*}
1-3 n=n-1 \longrightarrow n=\frac{1}{2} \tag{5}
\end{equation*}
$$

Substituting $n=\frac{1}{2}$ into (4) gives, after a bit of simplificiation

$$
\begin{equation*}
v^{\prime} x^{1 / 2}=\left(v^{-3}-v\right) x^{-1 / 2} \tag{6}
\end{equation*}
$$

This is a separable differential equation. We can rewrite it as

$$
\begin{equation*}
\frac{\mathrm{d} v}{v^{-3}-v}=\frac{\mathrm{d} x}{x} \tag{7}
\end{equation*}
$$

The right hand side is just $\ln |x|+C$. The left can be rewritten as follows:

$$
\begin{equation*}
\int \frac{\mathrm{d} v}{v^{-3}-v}=\int \frac{v^{3} \mathrm{~d} v}{1-v^{4}}=-\frac{1}{4} \int \frac{4 v^{3} \mathrm{~d} v}{v^{4}-1}=-\frac{1}{4} \ln \left|v^{4}-1\right| \tag{8}
\end{equation*}
$$

where we have used the fact that the numerator of the integrand is the derivative of the denominaor, i.e.

$$
\begin{equation*}
\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln |f(x)|+C \tag{9}
\end{equation*}
$$

This turns Equation (7) into

$$
\begin{equation*}
-\frac{1}{4} \ln \left|v^{4}-1\right|=\ln |x|+C \tag{10}
\end{equation*}
$$

Exponentiating both sides gives

$$
\begin{equation*}
\left(v^{4}-1\right)^{-1 / 4}=A x \tag{11}
\end{equation*}
$$

where A is a new arbitrary constant. (11) can be readily solved for v :

$$
\begin{equation*}
v= \pm \sqrt[4]{(A x)^{-4}+1} \tag{12}
\end{equation*}
$$

Or, using (2) and the fact that $n=\frac{1}{2}$,

$$
\begin{equation*}
y= \pm x^{2} \sqrt[4]{(A x)^{-4}+1} \tag{13}
\end{equation*}
$$

Finally, we can apply the initial condition $y(1)=2$, to get $A^{-4}=15$ so that our final answer becomes

$$
y=x^{2} \sqrt[4]{15 x^{-4}+1}
$$

