Q: Find the general solution to the following differential equation using the method of variation of parameters

$$
\begin{equation*}
(2 x+1)(x+1) y^{\prime \prime}+2 x y^{\prime}-2 y=(2 x+1)^{2} \tag{1}
\end{equation*}
$$

Given that $y_{1}=x$ and $y_{2}=\frac{1}{x+1}$ are linearly independent solutions to the corresponding homogeneous equation.

A: Dividing both sides of (1) by the leading coefficient, we have

$$
\begin{equation*}
y^{\prime \prime}+\frac{2 x}{(2 x+1)(x+1)} y^{\prime}-\frac{2}{(2 x+1)(x+1)} y=\frac{2 x+1}{x+1} \tag{2}
\end{equation*}
$$

Let us call the quantity on the right-side of the equation of this equation $g(x)$.
Meanwhile, the Wronskian W for the solutions y_{1} and y_{2} is

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \tag{3}\\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & \frac{1}{x+1} \\
1 & -\frac{1}{(x+1)^{2}}
\end{array}\right|=-\frac{x}{(x+1)^{2}}-\frac{1}{x+1}=-\frac{2 x+1}{(x+1)^{2}}
$$

According to (e.g.) Differential Equations and Linear Algebra (2001) by Edwards and Penny, pg. 335 the particular solution to (1) is given by

$$
\begin{equation*}
y_{p}=y_{1} u_{1}+y_{2} u_{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} g}{W}=-\int \frac{\frac{1}{x+1} \cdot \frac{2 x+1}{x+1}}{-\frac{2 x+1}{(x+1)^{2}}} \mathrm{~d} x=\int \mathrm{d} x=x \tag{5}\\
& u_{2}=\int \frac{y_{1} g}{W}=\int \frac{x \cdot \frac{2 x+1}{x+1}}{-\frac{2 x+1}{(x+1)^{2}}} \mathrm{~d} x=-\int x(x+1) \mathrm{d} x=-\frac{1}{3} x^{3}-\frac{1}{2} x^{2} \tag{6}
\end{align*}
$$

Plugging (5) and (6) into (4), we have

$$
\begin{equation*}
y_{p}=x^{2}-\frac{1}{x+1}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right) \tag{7}
\end{equation*}
$$

And the overall solution is

$$
\begin{equation*}
y=c_{1} x+\frac{c_{2}}{x+1}+x^{2}-\frac{1}{x+1}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right) \tag{8}
\end{equation*}
$$

