Problem \#4 (20 points)

Let V be the vector space $P_{2}[x ; R]$ with inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

and let W be the subspace of all $r(x)$ in V that satisfy the condition

$$
\int_{0}^{1} r(x) d x=r(1)-r(0)
$$

Decompose the polynomial

$$
s(x)=13+26 x+39 x^{2}
$$

in V as a sum of one part that lies in entirely in W and one part that is perpendicular to all of W, with respect to the above inner product.

Solution: We begin by noting computing a basis for the subspace W. Since we are working in P_{2}, we let $r(x)=a x^{2}+b x+c$

Applying the boundary value condition, we have

$$
\begin{aligned}
\int_{0}^{1}\left(a x^{2}+b x+c\right) & =r(1)-r(0) \\
{\left[\frac{a}{3} x^{3}+\frac{b}{2} x^{2}+c x\right]_{0}^{1} } & =a+b \\
\frac{a}{3}+\frac{b}{2}+c & =a+b \\
\longrightarrow c & =\frac{2}{3} a+\frac{1}{2} b
\end{aligned}
$$

Evidently, $r(x)=a x^{2}+b x+\frac{2}{3} a+\frac{1}{2} b$

$$
=a\left(x^{2}+\frac{2}{3}\right)+b\left(x+\frac{1}{2}\right)
$$

This means that the set $\left\{x^{2}+\frac{2}{3}, x+\frac{1}{2}\right\}$ constitutes a basis for W. Let us call the vectors in this set w_{1} and w_{2}, respectively. w_{1} and w_{2} are not orthogonal to each other since $\left\langle w_{1}, w_{2}\right\rangle \neq 0$. We can convert this into an orthogonal basis by projecting w_{1} onto w_{2} and redefining w_{1} as this projection subtracted from the original vector:
$w_{1} \equiv w_{1}-\operatorname{proj}_{w_{2}} w_{1}$

$$
\begin{aligned}
& =w_{1}-\frac{\left\langle w_{1}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} \cdot w_{2} \\
& =x^{2}+\frac{2}{3}-\frac{\int_{0}^{1}\left(x^{2}+\frac{2}{3}\right)\left(x+\frac{1}{2}\right) \mathrm{d} x}{\int_{0}^{1}\left(x+\frac{1}{2}\right)^{2} \mathrm{~d} x} \cdot\left(x+\frac{1}{2}\right) \\
& =x^{2}-x+\frac{1}{6}
\end{aligned}
$$

We now compute the components of our vector $s(x)$ parallel to w_{1} and w_{2} by projecting it onto each of them:

$$
\begin{aligned}
s_{1} & =\operatorname{proj}_{w_{1}} s \\
& =\frac{\left\langle s, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} \cdot w_{1} \\
& =-\frac{\int_{0}^{1}\left(13+26 x+39 x^{2}\right)\left(x^{2}-x+\frac{1}{6}\right) \mathrm{d} x}{\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} \mathrm{~d} x} \cdot\left(x^{2}-x+\frac{1}{6}\right) \\
& =39 x^{2}-39 x+\frac{13}{2} \\
s_{2} & =\operatorname{proj}_{w_{2}} s \\
& =\frac{\left\langle s, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} \cdot w_{2} \\
& =-\frac{\int_{0}^{1}\left(13+26 x+39 x^{2}\right)\left(x+\frac{1}{2}\right) \mathrm{d} x}{\int_{0}^{1}\left(x+\frac{1}{2}\right)^{2} \mathrm{~d} x} \cdot\left(x+\frac{1}{2}\right) \\
& =41 x+\frac{41}{2}
\end{aligned}
$$

The sum, $s_{\|}$of the vectors s_{1} and s_{2}

$$
s_{\|}=39 x^{2}+2 x+27
$$

belongs to the subspace W since it is a linear combination of its basis vectors. Meanwhile, the part of s lying outside W is

$$
s_{\perp}=s-s_{\|}=24 x-14
$$

It is straightforward to confirm that s_{\perp} does not belong to W by showing that it is orthogonal to both w_{1} and w_{2}, i.e. that $\left\langle s_{\perp}, w_{1}\right\rangle=0$ and $\left\langle s_{\perp}, w_{2}\right\rangle=0$.

