Q: A study was conducted to determine if diabetes mellitus is more lethal in men as compared to wmen. It was found that the death rate due to diabetes mellitus was 28.9% among men and $\mathbf{2 2 . 5 \%}$ among women. Suppose the study was conducted using a sample of 100 men and 100 women.

a) What are the appropriate hypotheses?

H_{0} : the disease is equally lethal for both men and womne
H_{a} : the disease is more lethal for men than for women. (Note: we could also have answered "the disease is has different lethalities for men and women"; in this case, a two-tailed test would be used in place of the one-tailed test.)
b) Calculate the value of the common proportion $\hat{\mathbf{p}}_{\mathbf{c}}$
\hat{p}_{c} is the weighted average over the entire sample (of men and women). In this case, since the sample sizes are equal, we can simply average them:
$\hat{p}_{c}=\frac{.289+.225}{2}=.257$

c) Calculate the value of the test statistic.

We use the common proportion as an estimate of the population mean so that we can calculate z as follows:

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}}
$$

According to $H_{0}, p_{1}=p_{2}=\hat{p}_{c}$, so this becomes

$$
z_{0}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{1}}+\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{2}}}}
$$

or

$$
z_{0}=\frac{.289-.225}{\sqrt{\frac{(.257)(1-.257)}{100}+\frac{(.257)(1-.257)}{100}}} \approx 1.03
$$

d) What is the p-value of the test.

According to the table, our z-score corresponds to a percentile of .8485 , so $p \approx .15$
e) Since p >0.05, the evidence is not strong enough to reject the null hypothesis.
f) State your conclusion in the context of the problem

There is not a statistically significant difference in death rates among male and female diabetes patients.

