
• When we calculated the gravitational potential energy in a previous chapter, we assumed that g 
was a constant.  To calculate the gravitational potential energy over large distances, we have to 
take into account the fact that g can vary.  Therefore, we have to start with the more general 
definition of gravitational force.
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• Therefore the potential energy due to a generalized gravitational field is given by
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• Notice that the result is negative.  This makes sense, because the potential energy is lowest 
(most negative) when the objects are closest together and highest when the distance between
them is great.  If zero potential energy is set to zero when R1 = ∞ (far enough apart that the 
first term becomes negligible), the change in energy becomes simply.  
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• Because the potential energy at the surface of a planet is negative (relative to an object in 
outer space free from gravitational interactions), it is often said that any object located in a 
gravitational field is in a potential “well”.  

• Suppose we launch a projectile with the intention of sending it into space.  Such a projectile 
when it is near the surface of the Earth would have to have a lot of velocity; when it reaches 
outer space (R = ∞), it will have a lot of gravitational potential energy, because by falling 
into the gravitational well from that distance would result in the acquisition of a lot of 
kinetic energy.
• According to the law of conservation of energy, we can say that the kinetic energy lost 

while gaining altitude is equal to the potential energy gained
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Equivalently, we could set the gravitational potential energy in deep space equal to zero and write that  
that the total initial energy (partly kinetic, partly potential) equals the total final energy (which is zero 
because the projectile is far from any gravitational source and all its initial velocity has been “used up” 



in the act of escaping)
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Either way, solving for vi, we see that

• This velocity is called the escape velocity.
• A common misconception is that a rocket fired from the Earth's surface must reach the 

escape velocity in order to escape orbit.  But this is not true because rockets do not start 
out with a constant velocity, but continue to accelerate throughout their altitude gain. 
The escape velocity is the velocity a projectile would need to have to escape Earth's 
orbit.

• In reality a rocket could not go at speeds near the escape velocity near the surface of the 
Earth because air resistance would cause it to burn up.  Speeds like this are normally 
seen by spacecraft only after they have reached space, or during reentry.

• Escape velocity depends on distance from the object is escaping from.  For an object 
already in orbit around the Earth, the escape velocity is less, because it the work integral
is smaller.  The escape velocity from the sun is about 617 km/s at the surface of the sun 
but only about 42 km/s from the orbit of the Earth. 

• Rockets and space elevators avoid the need for such high velocities because they are not
projectiles.  In order to continue rising, such an object needs only to  have a vertical 
force greater than gravity at each point.


