Q: A person weighs exactly 600.0 N at the North Pole. How much will they weigh at the equator. (Assume the Earth's radius is 6370 km at both locations.)

A: To find the person's mass, we sum the forces at the North Pole:

$$
\begin{aligned}
& \Sigma F=F_{g}-F_{N}=0 \\
& m g-F_{N}=0 \\
& m=\frac{F_{N}}{g}=\frac{600 \mathrm{~N}}{9.81 \mathrm{~m} / \mathrm{s}^{2}} \approx 61.14 \mathrm{~kg}
\end{aligned}
$$

This mass is a constant, so we can use this same value when we add up the forces at the equator. Note, however, that the sum of forces no longer equals zero since a point on the Earth's equator is accelerating.

$$
\Sigma F=F_{g}-F_{N}=m a_{R}=m \frac{v^{2}}{R}=m \frac{\left(\frac{2 \pi R}{T}\right)^{2}}{R}=\frac{4 \pi^{2} m R}{T^{2}}
$$

The gravitational force between the Earth and the person has not changed and is still $F_{g}=600 \mathrm{~N}$. What we colloquially think of as weight, however, is really the force of contact, i.e. the normal force, between the person and the ground. Solving for F_{N}, we have

$$
F_{N}=F_{g}-\frac{4 \pi^{2} m R}{T^{2}}=600 \mathrm{~N}-\frac{4 \pi^{2}(61.14 \mathrm{~N})\left(6.37 \times 10^{6} \mathrm{~m}\right)}{(86400 \mathrm{~s})^{2}} \approx 597 \mathrm{~N}
$$

The person weighs only about 3 newtons less than they would at the equator. A difference of this magnitude could be measured accurately but would probably not be noticeable by the person.

